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ABSTRACT

Most ensembles suffer from underdispersion and systematic biases. One way to correct for these short-

comings is via machine learning (ML), which is advantageous due to its ability to identify and correct

nonlinear biases. This study uses a single random forest (RF) to calibrate next-day (i.e., 12–36-h lead time)

probabilistic precipitation forecasts over the contiguous United States (CONUS) from the Short-Range

Ensemble Forecast System (SREF) with 16-km grid spacing and the High-Resolution Ensemble Forecast

version 2 (HREFv2) with 3-km grid spacing. Random forest forecast probabilities (RFFPs) from each

ensemble are compared against raw ensemble probabilities over 496 days from April 2017 to November

2018 using 16-fold cross validation. RFFPs are also compared against spatially smoothed ensemble

probabilities since the raw SREF and HREFv2 probabilities are overconfident and undersample the true

forecast probability density function. Probabilistic precipitation forecasts are evaluated at four pre-

cipitation thresholds ranging from 0.1 to 3 in. In general, RFFPs are found to have better forecast reliability

and resolution, fewer spatial biases, and significantly greater Brier skill scores and areas under the relative

operating characteristic curve compared to corresponding raw and spatially smoothed ensemble proba-

bilities. The RFFPs perform best at the lower thresholds, which have a greater observed climatological

frequency. Additionally, the RF-based postprocessing technique benefits the SREF more than the

HREFv2, likely because the raw SREF forecasts contain more systematic biases than those from the raw

HREFv2. It is concluded that the RFFPs provide a convenient, skillful summary of calibrated ensemble

output and are computationally feasible to implement in real time. Advantages and disadvantages of

ML-based postprocessing techniques are discussed.

1. Introduction

Over the past 20 years, increases in computing re-

sources have reshaped the state of numerical weatherCorresponding author: Eric D. Loken, eric.d.loken@noaa.gov
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prediction (NWP) in several key ways: by enabling

skillful high-resolution ensemble forecasts (e.g., Xue

et al. 2007; Jirak et al. 2012, 2016, 2018; Roberts et al.

2019; Clark et al. 2018; Schwartz et al. 2015, 2019); by

increasing the capacity to run and store models for re-

search and operations (e.g., Hamill and Whitaker 2006;

Kain et al. 2010; Hamill et al. 2013; Clark et al. 2018;

Roberts et al. 2019); and by reducing the time required

to perform complex analyses, enabling more—andmore

frequent—high-resolution NWP products (e.g., Kain

et al. 2010; Gallo et al. 2017, 2019; Roberts et al. 2019).

These changes have led to large improvements in NWP

quality and value, particularly for fields related to con-

vection. For example, the higher resolution associated

with convection-allowingmodels (CAMs; i.e., those that

explicitly simulate convection and run with horizontal

grid spacing # ;4 km) has improved forecasts of storm

initiation, evolution, andmode compared to convection-

parameterizing models (e.g., Kain et al. 2006). Mean-

while, convection-allowing ensembles (CAEs) provide

further benefits by accounting for uncertainties in ini-

tial conditions and/or model physics (e.g., Roebber

et al. 2004; Leutbecher and Palmer 2008; Clark et al.

2009) and conveying forecast uncertainty information

to the user (e.g., Palmer 2017). Despite ensembles’ higher

computational cost, their benefits have been well docu-

mented at both convection-parameterizing (e.g., Epstein

1969; Leith 1974; Du et al. 1997; Stensrud et al. 1999;

Wandishin et al. 2001; Bright and Mullen 2002; Clark

et al. 2009) and convection-allowing (e.g., Coniglio et al.

2010; Loken et al. 2017; Schwartz et al. 2017) resolutions.

Nevertheless, CAMs and CAEs still have biases in

the placement, timing, and magnitude of precipitation-

producing weather systems (e.g., Davis et al. 2006;

Kain et al. 2008; Weisman et al. 2008; Herman and

Schumacher 2016, 2018c). Additionally, CAEs remain

relatively expensive to run and thus typically have

small ensemble membership (e.g., Schwartz et al. 2014;

Clark et al. 2018). While small ensembles (e.g., consist-

ing of 10–30 members) have been found to deliver

nearly as much forecast skill as larger ensembles (e.g.,

up to 50members; Clark et al. 2011; Schwartz et al. 2014;

Sobash et al. 2016), they can undersample the forecast

probability density function (PDF; e.g., Schwartz et al.

2010, 2014; Roberts et al. 2019), potentially leading

to degraded reliability and underdispersion, especially

in the absence of neighborhood evaluation or post-

processing methods (Schwartz et al. 2014). Indeed, most

CAMs and CAEs are currently underdispersive (e.g.,

Romine et al. 2014). One method to increase CAE

spread is to increase the diversity of the ensemble

membership, which can be achieved by using members

with multiple dynamic cores, analyses, boundary layer

schemes, microphysics parameterizations, and initializa-

tion periods [e.g., the Storm-Scale Ensemble of Oppor-

tunity (Jirak et al. 2012, 2016) and the High-Resolution

Ensemble Forecast System, version 2 (Jirak et al. 2018;

Roberts et al. 2019)]. While diverse, informally designed

ensembles can produce skillful forecasts (Jirak et al.

2016, 2018; Clark et al. 2018; Schwartz et al. 2019), their

skill comes with several notable drawbacks. One is

that the ensemble members tend to cluster around

multiple solutions based on their dynamic core (e.g.,

Schwartz et al. 2019). This member clustering can cause

the ensemblemean forecast to fall outside of the clusters

of member solutions (see Fig. 1 in Schwartz et al. 2019)

and can adversely affect the quality of the ensemble

probabilities, since each member’s solution is not

equally likely to occur (Schwartz et al. 2019). Another

potential consequence of multimodel, multiple-physics

CAEs is an artificial inflation of ensemble spread due

to the existence of systematic biases between ensem-

ble members (Eckel and Mass 2005; Clark et al. 2010b;

Loken et al. 2019). These shortcomings are typically

resolved using one or more postprocessing techniques,

including isotropic (e.g., Sobash et al. 2011, 2016;

Loken et al. 2017, 2019; Roberts et al. 2019) or aniso-

tropic (e.g., Marsh et al. 2012) spatial smoothing of

the raw forecast probability field, recalibration of fore-

cast probabilities (e.g., Hamill et al. 2008), probability

matching techniques (e.g., Ebert 2001; Clark et al.

2010a,b; Clark 2017; Loken et al. 2019), and various

neighborhood-based methods to construct ensemble

probabilities (e.g., Schwartz et al. 2010; Blake et al. 2018;

Roberts et al. 2019; Schwartz and Sobash 2017).

Another avenue for postprocessing is machine learn-

ing (ML; e.g., McGovern et al. 2017). Conceptually,

ML algorithms identify patterns in historical data and

use these patterns to correct for systematic ensemble

biases. This idea is not new; dynamical–statistical

methods have existed since at least the 1950s (e.g.,

Malone 1955; Klein et al. 1959). One example of a well-

performing traditional technique is Model Output

Statistics (MOS; Glahn and Lowry 1972), which re-

lates NWP output to observed variables of interest

(e.g., observed precipitation). ML-based postprocessing

methods work similarly; however, while MOS tech-

niques tend to be based on linear regression (e.g., Glahn

and Lowry 1972), ML techniques are not necessarily

linear. A variety of ML approaches, other than re-

gression, have been applied to weather prediction since

the 1980s and include: artificial neural networks

(ANNs; e.g., Key et al. 1989; Marzban and Stumpf 1996;

Kuligowski and Barros 1998; Hall et al. 1999; Manzato

2007; Rajendra et al. 2019), support vector machines

(e.g., Ortiz-García et al. 2014; Adrianto et al. 2009),
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clustering algorithms (e.g., Baldwin et al. 2005), genetic

algorithms (e.g., Szpiro 1997; Kishtawal et al. 2003;

Wong et al. 2008), and decision tree–based methods

(Breiman 1984, 2001; Herman and Schumacher 2018c).

Although the ML algorithms mentioned above are

not ‘‘new’’—the random forest (RF) technique utilized

herein was described nearly 20 years ago by Breiman

(2001)—enhanced computing power and storage ca-

pacity have facilitated the successful application of ML

to NWP in recent years (e.g., McGovern et al. 2017, and

works cited therein). Indeed, as computing power and

storage continue to increase, the role ML plays in NWP

postprocessing is likely to grow as well. Especially as

forecasters confront an ever-increasing deluge of data

(e.g., Carley et al. 2011; McGovern et al. 2017; Karstens

et al. 2018), ML or other postprocessing techniques may

be desired to quickly and effectively summarize in-

formation from NWP products. Therefore, this paper

seeks to address important basic questions regarding the

application of ML techniques in general—and the RF

algorithm in particular—to NWP postprocessing. Con-

siderations include what, if anything, a ML approach

provides relative to simpler forms of postprocessing (e.g.,

two-dimensional spatial smoothing) and how feasible it

would be to implement ML-based predictions operation-

ally. Specifically, the costs and benefits of an RF-based

approach are considered relative to two-dimensional

isotropic spatial smoothing for two multimodel,

multi-analyses, multiphysics ensembles: the convection-

parameterizing Short-Range Ensemble Forecast System

(SREF; Du et al. 2015) and the convection-allowing

High-Resolution Ensemble Forecast System, version 2

(HREFv2; Jirak et al. 2018; Roberts et al. 2019). A focus

on precipitation is adopted herein due to its importance

as a sensible weather field related to convection and

the high economic and human impacts of heavy pre-

cipitation events (e.g., NCEI 2019). The next-day (i.e.,

1200 UTC–1200 UTC) time frame is selected due to its

relative simplicity and to match operational Day 1 prod-

ucts issued by the Weather Prediction Center (WPC).

The remainder of this paper is organized as follows:

section 2 details the methods and datasets used herein,

section 3 describes the results and presents two case

studies for analysis, section 4 summarizes and discusses

important findings, and section 5 concludes the paper

and outlines avenues for future work.

2. Methods

a. Datasets

Forecast data from the SREF and HREFv2 are con-

sidered over 496 common days, spanning April 2017–

November 2018 (Table 1). The analysis domain for both

ensembles covers the contiguousUnited States (CONUS;

Fig. 1), and the analysis period covers 24h (1200 UTC–

1200 UTC the next day). Details on each ensemble’s

configuration are given below.

The SREF is a 26-member convection-parameterizing

ensemble in which half of the members use the Ad-

vanced Research Weather Research and Forecasting

(WRF-ARW; Skamarock et al. 2008) dynamic core and

half use the dynamic core from the Nonhydrostatic

Multiscale Model on the B grid (NMMB; Janjić and

Gall 2012). The SREF uses 16-km horizontal grid

spacing and runs four cycles per day at 0300, 0900, 1500,

and 2100 UTC (Du et al. 2015), with forecast fields

output every 3 h. This study uses 15–39-h forecasts from

the 2100 UTC initialization. Due to storage and data

availability constraints, the SREF analyses herein are

output to a grid with 32-km horizontal grid spacing

(NCEP grid 221). SREF configuration details are sum-

marized in Table 2.

The HREFv2 originates from the Storm Prediction

Center’s Storm-Scale Ensemble of Opportunity (SSEO;

Jirak et al. 2012, 2016, 2018), which was developed

as a collection of individual CAMs with different dy-

namic cores, analyses, initialization times, microphysics,

and boundary layer parameterizations. Although the

HREFv2 and SSEO use ad hoc, informal designs, they

have consistently outperformed other CAEs (Jirak et al.

2016, 2018; Schwartz et al. 2019). Indeed, the strong

performance of the HREFv2 led to its implementation

as the NationalWeather Service’s first operational CAE

on 1 November 2017 (Jirak et al. 2018; Roberts et al.

2019). Despite the drawbacks arising from its infor-

mal design (e.g., unequal likelihood, member cluster-

ing, maintenance difficulties; Schwartz et al. 2019), it

remains a ‘‘high-quality baseline’’ (Schwartz et al. 2019)

for CAE performance.

The HREFv2 comprises eight members, with half the

membership composed of 12-h time lagged runs (Jirak

et al. 2018; Roberts et al. 2019). The nonlagged (time-

lagged) members are initialized daily at 0000 UTC (the

previous day at 1200 UTC). All members use approxi-

mately 3-km horizontal grid spacing and collectively

contain two dynamic cores, two microphysics schemes,

and two boundary layer parameterizations. Forecast

fields are output hourly from each member. 12–36-h

HREFv2 forecasts are used herein. Full details of

HREFv2 configuration are given in Table 3.

National Center for Atmospheric Research/Earth

Observing Laboratory (NCAR/EOL) Stage IV precip-

itation data (Lin 2011) are used for observations. While

the dataset has known deficiencies, especially in regions

of complex terrain where radar coverage is sparse and/or

inaccurate (e.g., Hitchens et al. 2013; Herman and
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Schumacher 2016, 2018b), the dataset has high-resolution

(;4.8-km grid spacing) coverage over the full CONUS,

making it the preferred observational dataset.

b. Obtaining raw and spatially smoothed ensemble
forecasts

Raw SREF and HREFv2 forecast probabilities are

computed by first remapping each member’s 24-h

(1200 UTC–1200 UTC) quantitative precipitation

forecast to NCEP grid 215, which has approximately

20-km horizontal grid spacing. The remapping is done

using a neighbor budget method (Accadia et al. 2003),

a nearest-neighbor averaging method that approximately

conserves total precipitation. Upscaling to 20km saves

significant computational expense and better matches

scales at which predictability should exist at 12–36-h

lead times. After upscaling, the fraction of ensemble

members exceeding a given precipitation threshold is

calculated at each point on the 20-km grid. Four 24-h

precipitation thresholds are considered: 0.1, 0.5, 1, and

3 in. (i.e., 2.54, 12.7, 25.4, and 76.2mm).

Given the underdispersive properties of most CAEs,

a two-dimensional, isotropic Gaussian kernel density

function (e.g., Sobash et al. 2011, 2016; Loken et al. 2017,

2019; Roberts et al. 2019) is often applied to a CAE’s

raw forecast probability field as a simple but effective

means of increasing forecast spread and reducing over-

forecasting bias. Since most CAEs are overconfident

and underdispersive, spatial smoothing typically en-

hances reliability and resolution, but oversmoothing

can degrade reliability and sharpness (Sobash et al.

2011, 2016; Loken et al. 2017, 2019; Roberts et al. 2019).

In this study, as in Loken et al. (2019), the follow-

ing equation is applied to the (remapped) SREF and

HREFv2 raw ensemble forecast probabilities to create

isotropic spatially smoothed forecast probabilities:

f 5 �
N

n51

1

2ps2
exp

"
2
1

2

�
d
n

s

�2
#
, (1)

where f is the forecast probability at a given point, N is

the number of points where at least one ensemble

TABLE 1. Forecast valid dates for each ensemble.

Month 2017 2018

January — 1–31

February — 1–28

March — 1–10, 14–17, 19–20, 22–26

April 28 7–30

May 1–2, 4–5, 7–10, 13–23, 26–31 1–31

June 1, 6–7, 9, 11–13, 15, 17–25 1–7, 10–30

July 3–6, 15–16, 18–19, 22–24, 30–31 1–31

August 1–10, 12–15, 17–30 1–5, 8–31

September 1–10, 13–15, 17–30 1–30

October 1–24, 26–31 1–31

November 1–30 1–4, 6, 9–13

December 1–31 —

FIG. 1. Analysis domain for each ensemble.
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member exceeds the given precipitation threshold,

dn is the distance from the current point to the nth

point, and s is the standard deviation of the Gaussian

kernel. Importantly, s controls the degree of spatial

smoothing and must be tuned appropriately to pro-

duce skillful forecasts. Herein, s is chosen such that

the resulting collection of daily, CONUS-wide fore-

cast probabilities minimizes the Brier score (BS;

TABLE 2. SREF member specifications, adapted from Du et al. (2015). Initial conditions (ICs) are taken from the operational Rapid

Refresh (RAP; Benjamin et al. 2016), the National Centers for Environmental Prediction’s (NCEP’s) Global Forecast System (GFS), and

the North American Mesoscale Model Data Assimilation System (NDAS). IC perturbations are derived using a blend of Global En-

semble Forecast System (GEFS) and SREF analyses. Lateral boundary conditions (LBCs) are from the GFS and GEFS members.

Convective parameterizations include theKain–Fritsch (KF; Kain 2004), Grell (1993), Betts–Miller–Janjić (BMJ; Betts 1986; Janjić 1994),

and simplified Arakawa–Schubert (Han and Pan 2011) schemes. Planetary boundary layer (PBL) schemes include the Yonsei University

(YSU; Hong et al. 2006), Mellor–Yamada–Nakanishi–Niino (MYNN; Nakanishi and Niino 2004, 2006), Mellor–Yamada–Janjić (MYJ;

Janjić 2002) parameterizations as well as that used in the GFS. Microphysics schemes include the WRF single-moment 6-class (WSM6;

Hong and Lim 2006), Thompson et al. (2004), and Ferrier et al. (2002) schemes.

Member ICs LBCs Convective PBL Microphysics

arw_ctl RAP GFS KF YSU WSM6

arw_p1 RAP GEFS13 Grell MYNN Thompson

arw_n1 RAP GEFS14 BMJ MYJ Ferrier

arw_p2 RAP GEFS15 BMJ MYJ Thompson

arw_n2 RAP GEFS16 KF YSU Ferrier

arw_p3 GFS GEFS17 KF YSU Thompson

arw_n3 GFS GEFS18 Grell MYNN WSM6

arw_p4 GFS GEFS19 KF YSU Ferrier

arw_n4 GFS GEFS20 BMJ MYJ WSM6

arw_p5 NDAS GEFS1 KF YSU WSM6

arw_n5 NDAS GEFS2 Grell MYNN Ferrier

arw_p6 NDAS GEFS3 Grell MYNN Thompson

arw_n6 NDAS GEFS4 BMJ MYJ Thompson

nmmb_ctl NDAS GFS BMJ MYJ Ferrier hi-res

nmmb_p1 NDAS GEFS1 BMJ MYJ Ferrier hi-res

nmmb_n1 NDAS GEFS2 SAS GFS WSM6

nmmb_p2 NDAS GEFS3 BMJ MYJ WSM6

nmmb_n2 NDAS GEFS4 SAS GFS Ferrier hi-res

nmmb_p3 GFS GEFS5 BMJ MYJ WSM6

nmmb_n3 GFS GEFS6 SAS GFS Ferrier hi-res

nmmb_p4 GFS GEFS7 BMJ MYJ Ferrier hi-res

nmmb_n4 GFS GEFS8 SAS GFS WSM6

nmmb_p5 RAP GEFS9 BMJ MYJ Ferrier hi-res

nmmb_n5 RAP GEFS10 SAS GFS WSM6

nmmb_p6 RAP GEFS11 BMJ MYJ WSM6

nmmb_n6 RAP GEFS12 SAS GFS Ferrier hi-res

TABLE 3. HREFv2 member specifications. HRW and NAM refer to High Resolution Window and North American Mesoscale Model

runs, respectively. The ‘‘212 h’’ in the first column indicates a 12-h time lagged member (i.e., 1200 UTC initialization the previous day

instead of 0000UTC initialization). Initial conditions and lateral boundary conditions (IC/LBCs) are taken from theNAM,RapidRefresh

(RAP), and/or Global Forecast System (GFS), as indicated. A ‘‘26 h’’ indicates that the model from which the IC/LBCs are derived was

initialized 6-h before the given HREFv2 member. Microphysics schemes include theWRF single-moment 6-class (WSM6; Hong and Lim

2006) and the Ferrier–Aligo (Aligo et al. 2018) schemes, while boundary layer parameterizations include the Mellor–Yamada–Janjić

(MYJ; Janjić 2002) and Yonsei University (YSU; Hong et al. 2006) schemes.

Member Model Core IC/LBCs Microphysics PBL

HRW NSSL WRF-ARW NAM/NAM 26 h WSM6 MYJ

HRW NSSL 212 h WRF-ARW NAM/NAM 26 h WSM6 MYJ

HRW ARW WRF-ARW RAP/GFS 26 h WSM6 YSU

HRW ARW 212 h WRF-ARW RAP/GFS 26 h WSM6 YSU

HRW NMMB NMMB RAP/GFS 26 h Ferrier–Aligo MYJ

HRW NMMB 212 h NMMB RAP/GFS 26 h Ferrier–Aligo MYJ

NAM CONUS Nest NMMB NAM/NAM Ferrier–Aligo MYJ

NAM CONUS Nest 212 h NMMB NAM/NAM Ferrier–Aligo MYJ
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e.g., Wilks 1995) over the training dataset. The BS can

be expressed as

BS5
1

N
�
N

i51

( f
i
2 o

i
)2 , (2)

where N is the total number of forecast–observation

pairs (i.e., the number of grid points in the domain

multiplied by the number of days in the dataset), fi is the

forecast probability at the ith grid point, and oi is the

binary observation at the ith grid point.

c. Random forest–based forecasts

While the umbrella of machine learning includes

many popular and powerful algorithms, the random

forest (Breiman 2001) algorithm has some important

advantages that make it the preferred technique in this

study. Namely, RFs do not require standardized inputs,

they have relatively few hyperparameters to tune, they

are parallelizable and thus relatively fast to run, and

previous studies (e.g., Gagne et al. 2014; Herman and

Schumacher 2018a,c) have found that they perform well

for precipitation prediction.

The building blocks of RFs are individual decision

trees (Breiman 1984). Decision trees recursively split

a dataset by selecting, at each node, the variable and

threshold that maximizes a dissimilarity metric (e.g.,

information gain) until a stopping criterion is reached

(e.g., the number of dataset samples falls below a spec-

ified amount, the tree reaches a certain depth, etc.).

Once the splitting criteria are determined for each node

using the training data, the tree can be used for pre-

diction on a testing dataset by sorting testing samples

through the tree. Testing probabilities are given by the

fraction of training samples associated with an observed

event of interest at the terminal node, or ‘‘leaf node,’’

into which a testing sample is classified. One drawback

of individual decision trees is that they tend to be overly

sensitive to small variations in the training dataset (e.g.,

Gagne et al. 2014). RFs provide a solution to this so-

called ‘‘brittleness’’ (Gagne et al. 2014) by growing

multiple trees, which are unique due to the introduction

of stochasticity into the training process. Specifically,

each tree in the RF uses a subset of training samples

determined by bootstrap resampling (i.e., resampling

with replacement; e.g., Wilks 1995) the full set, and splits

at each node are determined by considering a random

subset of variables. In the RF framework, testing prob-

abilities of event occurrence are simply the mean testing

probabilities from each tree. Although theRF’smultiple

trees may make it more difficult for humans to interpret

RF output probabilities, the RF method is generally

attractive since it is resistant to overfitting and tends

to produce outputs with low bias (e.g., Breiman 2001).

More details on the RF technique can be found in

Herman and Schumacher (2018c), McGovern et al.

(2017), and Gagne et al. (2014).

Herein, 18 (20) fields are used as inputs into the RF

algorithm to obtain SREF (HREFv2) RFFPs (Table 4).

These fields include variables that represent a point’s

meteorological environment, variables that have an

obvious direct relationship with observed precipitation,

and latitude and longitude, which are designed to ac-

count for spatially varying precipitation climatology.

Simulated 2–5-km updraft helicity (UH) is also included

as a predictor given its relationship to sustained rotating

updrafts and severe weather occurrence (e.g., Kain et al.

2008; Sobash et al. 2011; Loken et al. 2017), since su-

percells or mesoscale convective systems that produce

elevated values of simulated UH may also produce lo-

calized heavy rainfall (e.g., Nielsen and Schumacher

2018). The SREF uses two less fields compared to the

HREFv2 since the SREF does not output forecasts of

simulated reflectivity or UH.

Predictors are derived from ensemble forecast grid-

point values on the 20-km grid. Originally, predictors

included forecasts from each ensemble member, since

it was hypothesized that the RF algorithm could learn

and correct for each member’s individual systematic

biases. However, simply using the ensemble mean value

of each variable produced RFFPs that were at least

as skillful as those made using predictors from each

member. Moreover, using only ensemble mean forecast

values made it computationally feasible for the RF to

consider predictors from multiple points in space, po-

tentially allowing the RF to identify and correct non-

linear systematic spatial biases. Therefore, ensemble

mean forecast values from points (on the 20-km grid)

within an approximately 100-km box surrounding the

forecast point (i.e., forecast values from the forecast

point and the 24 closest points) are used as predictors.

Notably, there is no spatial averaging of the values

used beyond the neighbor budget interpolation to the

20-km grid.

Further necessary reductions in dataset dimensional-

ity are achieved through preprocessing the raw ensem-

ble data. First, a temporal mean is taken over the

8 three-hourly (24 one-hourly) forecast fields each day

at each native grid point for the SREF (HREFv2).

While useful information is undoubtedly lost using this

method, the temporal mean provides an overall sum-

mary of the simulated meteorological conditions dur-

ing the relevant 24-h period, which is hypothesized

to be sufficient for skillful RF probabilistic precipita-

tion forecasts on next-day time scales. Each day’s tem-

poral mean forecasts are then remapped to the 20-km
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verification grid. Finally, 10% (i.e., 2130) of the (re-

mapped) points in the analysis domain are randomly

sampled without replacement and added to the dataset

for training each day (note that the full domain is still

used for testing).

Randomly sampling the domain in this manner, as in

Gagne et al. (2014), accomplishes two main objectives:

it reduces the computational expense of the algorithm

by appreciably shrinking the size of the training dataset,

and it decreases the likelihood of including multiple

highly correlated grid points in the training set, reducing

the chance of RF overfitting (i.e., fitting on noise rather

than actual, systematic patterns in the data). A sampling

rate of 10% is greater than that used by Gagne et al.

(2014) but is chosen to balance the trade-off between

computational expense and RFFP skill, which increased

only slightly at sampling rates beyond 10% in sensitiv-

ity tests from 0.5% to 70% (not shown). All data pre-

processing steps are summarized in Fig. 2.

After the data has undergone preprocessing, a

random forest classifier from the Python module Scikit-

Learn (Pedregosa et al. 2011) is used to train the en-

sembleRFs and createRFFPs. Based on hyperparameter

sensitivity tests (not shown), the random forest classifier

requires: 200 trees, a maximum tree depth of 15 levels,

at least 20 samples per leaf node, the minimization of

entropy for splits, and the consideration of
ffiffiffi
n
p

pre-

dictors (where n is the total number of predictors in the

dataset) at each node. Separate RFs are trained for each

precipitation threshold, but all RFs use the same hy-

perparameters. Importantly, since each threshold fore-

cast is created independently, there is no guarantee of

consistency between the probabilities of different

threshold exceedance. However, the use of different

RFs for different thresholds enables a more direct com-

parison of how the RF technique performs at each

threshold individually and allows for different types of

precipitation events to be predicted from trees/forests

with different, potentially more appropriate structures.

Unlike many previous studies (e.g., Gagne et al.

2014; Herman and Schumacher 2018c), separate RFs are

not trained for each season and/or geographic region.

Using a single RF to represent the entire CONUS year-

round likely sacrifices forecast skill, since locations have

different time- and space-varying climatologies (e.g.,

Schumacher and Johnson 2006). However, using a single

RF considerably simplifies the prediction and mainte-

nance processes of RF-based postprocessing. For ex-

ample, with multiple regional RFs, RFFPs may be

unphysically discontinuous near the border of two

regions, requiring additional postprocessing. Moreover,

multiple RFs require more computing power to train

(or retrain) and run when making daily predictions.

Additionally, it is hypothesized that the inclusion of

latitude and longitude coordinates as well as seasonally

varying environmental variables (e.g., temperature)

may help a single RF implicitly account for time- and

space-varying precipitation climatologies. This single-

RF approach, while perhaps less efficient than a multi-

RF approach with explicit dataset filtering, may be

advantageous for precipitation prediction since spa-

tially and seasonally distant training data (e.g., forecast

precipitation) may have at least some relevance for

all forecast points. However, the single-RF approach

may be less appropriate to use in problem domains

where distant training data are less relevant to a given

forecast point.

d. Verification

Sixteenfold cross validation with 31 days per fold is

used to verify the forecasts. Verification metrics are

computed on the full set of 496 forecasts derived from

each fold’s testing set. To facilitate a fair comparison

between the RFFPs and spatially smoothed forecasts,

TABLE 4. Predictor variables from each ensemble. Asterisks denote variables used for the HREFv2 RFFPs only. Due to limited com-

puting resources, all predictors except for latitude and longitude represent 24-h temporal mean ensemble mean quantities.

Predictor Variable Atmospheric Level

Temperature 500, 700, and 850 hPa, and 2m AGL

Dewpoint temperature 500, 700, and 850 hPa, and 2m AGL

Max hourly simulated reflectivity* 1 km AGL

CAPE Surface based

CIN Surface based

Precipitable water (PWAT) Entire column

Max hourly simulated UH* 2–5 km AGL

Max hourly U, V wind 10m AGL

Max hourly upward vertical velocity (UVV), downward

vertical velocity (DVV)

100–1000 hPa (400–1000 hPa for NAMmembers of HREFv2)

Forecast 24-h precipitation Surface

Lat, lon —
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the s that minimizes the BS over each fold’s training

set is used to create the spatially smoothed forecasts;

hence, s varies by fold (Fig. 3). Verification metrics are

computed over the full domain (Fig. 1) as well as over

five distinct regions (Fig. 4), which are based on com-

binations of the regions defined by Bukovsky (2011).

These regions have distinct temperature and precipita-

tion climatologies.

An important strategy for evaluating probabilistic

forecasts is the creation of 2 3 2 contingency tables

(e.g., Wilks 1995), which are derived from binarizing

the forecast at various probability thresholds. Verifica-

tion metrics such as probability of detection (POD),

probability of false detection (POFD), success ratio

(SR), bias, and critical success index (CSI) can then be

obtained [e.g., see Eqs. (3)–(7) in Loken et al. 2017].

These metrics form the basis of other forecast evalua-

tion tools used herein, such as the ROC curve (Mason

1982) and performance diagram (Roebber 2009). ROC

curves plot POD against POFD at multiple forecast

probability thresholds (here, 1%, 2%, and 5%–95% in

intervals of 5%). Area under the ROC curve (AUC)

provides a measure of forecast discrimination ability,

with values of 1 (0.5) indicating a perfect (random)

forecast. Since AUC is not sensitive to forecast reli-

ability (Wilks 2001), attributes diagrams (Hsu andMurphy

1986; Wilks 1995) measure reliability by grouping fore-

casts into k bins based on forecast probability and plot

the mean observed relative frequency of each bin

against the bin’s probability. Herein, 11 bins are used

[0%, 5%), [5%–15%), . . . , [85%–95%), and [95%–

100%]. Perfectly reliable forecasts fall along a diagonal

line with a slope of 1 passing through the origin. Over-

(under-) forecasts fall below (above) the perfect re-

liability line. Horizontal and vertical lines are plotted

at the sample climatological relative frequency, while

a ‘‘no skill’’ line is plotted halfway between the hori-

zontal climatology line and the line of perfect reliability.

Points above (below) the no-skill line contribute posi-

tively (negatively) to the Brier skill score when a refer-

ence forecast of climatology is used (Wilks 1995).

Performance diagrams (Roebber 2009) plot POD

against SR and include lines of constant bias and CSI.

Herein, forecasts are plotted on performance diagrams

at each of the 21 probability levels used to create the

ROC curves. The most skillful forecasts fall closest to

FIG. 2. Schematic illustrating the data preprocessing steps for the

8-member HREFv2. Note that the SREF follows a similar pro-

cedure but has 26 members and starts on a coarser native grid.

(a) The temporal mean is taken over 24 h at each native grid point

for each ensemble member. (b) The temporally averaged data are

 
remapped to an approximately 20-km grid. (c) An ensemble mean

is taken at each 20-km grid point. (d) 10% of the domain is ran-

domly sampled for training. (e) Training data consist of the pre-

dictor variables at each sampled point (yellow) and the 24 closest

20-km points.

2024 WEATHER AND FORECAST ING VOLUME 34

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/6/2017/4868677/w

af-d-19-0109_1.pdf by N
O

AA C
entral Library user on 11 August 2020



the upper right-hand corner of the plot, where POD, SR,

bias, and CSI are all optimized.

The BS (e.g., Wilks 1995) measures the magnitude of

the forecast probability errors and can be decomposed

into reliability, resolution, and uncertainty components

(Murphy 1973; Wilks 1995). The BS is a negatively ori-

ented score, so a score of 0 (1) indicates perfect (no)

skill. One disadvantage of the BS is that it is sensitive to

the observed climatological frequency of the event being

verified. The Brier skill score (BSS) helps account for

this effect by comparing the BS to that of a reference

forecast, which is often a forecast of climatology. The

BSS is defined as

BSS5
BS2BS

ref

02BS
ref

5 12
BS

BS
ref

, (3)

where, herein, BSref is the BS obtained by always fore-

casting the underlying climatological frequency associ-

ated with the entire dataset. The BSS is a positively

oriented score, with possible values from2‘ to 1. ABSS

of 0 (1) indicates no (perfect) skill relative to the refer-

ence forecast.

A one-sided paired permutation test (e.g., Good 2006)

is used herein to test whether the AUC and BSS of a

given set of forecasts (e.g., the RFFPs) is significantly

greater than a second set of forecasts (e.g., the spatially

FIG. 3. Relationship between the standard deviation of the Gaussian kernel (i.e., s) and testing fold for (a) the SREF and (b) the

HREFv2. In each plot, 0.1-, 0.5-, 1-, and 3-in. forecasts are depicted in purple, blue, gold, and red, respectively. The range of dates included

in each fold is listed on the x axis. Note the different y-axis scales.

FIG. 4. The five regional analysis regions, which include the West (gold), Great Plains

(light blue), Upper Midwest (salmon), South (royal blue), and East (purple).
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smoothed probabilities). The general procedure is the

same for both AUC and BSS. Individual-day forecasts

are randomly permuted between the two forecast sys-

tems 10 000 times to create a null distribution of met-

ric differences. The actual difference between the two

forecast systems’ skill metrics is then compared to the

null distribution to obtain a p value. In the AUC paired

permutation test, contingency table elements are ran-

domly permuted rather than the AUC values them-

selves since individual-day AUC values can be very

sensitive to small changes in contingency table ele-

ments (Hamill 1999). The final AUC values (and AUC

differences) for each iteration are computed based

on the permuted contingency table elements. In the

same manner, individual-day BSs rather than BSSs

are permuted, and BSSs (and BSS differences) for

each iteration are computed based on the collective

permuted BSs.

Spatial biases are assessed using an approach out-

lined by Clark et al. (2010a) and Marsh et al. (2012).

Conceptually, whenever a yes forecast is issued within

the domain, the spatial distribution of yes observa-

tions within a 500 km 3 500 km box is tabulated rela-

tive to the yes forecast point and the results are

composited over the entire dataset. However, these

yes observations are only added to the composite

if they fall within the analysis domain. While this

method can yield artificially anisotropic contributions

to the composite near the domain boundaries, tests

(not shown) have indicated that, overall, this method

does not appreciably bias the center of the distribution.

Thus, in the absence of systematic spatial biases, the

center of the distribution should be located at the yes

forecast point.

In this study, a yes observation is defined as the

Stage IV data exceeding a quantitative precipitation

threshold (e.g., 0.1, 0.5, 1, or 3 in.) on the verification

grid, while a yes forecast is defined as the forecast

exceeding a probability threshold that, to the nearest

1%, optimizes frequency bias. Defining yes forecasts in

this way allows for a clean comparison between fore-

casts by removing bias magnitude but still allowing for

spatial biases. Table 5 shows the forecast probability

thresholds and their corresponding frequency biases.

One drawback of ML-based postprocessing tech-

niques is that they assume the underlying dynamical

models do not change with time and must be retrained

whenever developers implement changes. An important

question, therefore, is: how long of a dataset is required

for ML to perform adequately? To address this ques-

tion, RFs are retrained and reevaluated using a dataset

comprising the first 62, 124, 248, and 372 days (i.e., the

first 1/8, 1/4, 1/2, and 3/4) of the full dataset, respectively.

These RFs use the same hyperparameters as described

previously. Although this approach is suboptimal, sen-

sitivity tests suggest that the BSS varies only slightly

with different hyperparameters; moreover, the set of

hyperparameters used previously was deemed close

enough to optimal to make using a constant set of

hyperparameters worth the reduced computational

expense. As with the full dataset, k-fold cross valida-

tion is used to evaluate the forecasts, with 31 forecasts

per fold.

This method of assessing the relationship between

forecast skill and dataset length is not perfect due to

the temporally varying precipitation climatology. For

example, one potential issue is that the smallest data-

sets, which have fewer folds, get verified only against

testing data from the same season as the training data.

As more data are added, the size of the training set

increases, but the training set starts to include data

from other times of the year relative to the test set.

Therefore, it is possible that these ‘‘new’’ training data

add only limited value to each testing fold. Addition-

ally, the uncertainty of the forecast itself changes with

time due to seasonal variations in climatology, such

that, as more dates are added to the dataset, the overall

TABLE 5. Forecast probability thresholds used to (approxi-

mately) optimize frequency bias for each forecasting system at

each precipitation threshold. Actual values of frequency bias are

reported in the fourth column.

Precipitation

threshold

Ensemble/

forecast

Forecast

probability

threshold (%)

Frequency

bias

0.1 in. SREF, raw 62 1.029

HREF, raw 38 1.040

SREF, smooth 55 1.011

HREF, smooth 43 0.996

SREF, RF 44 0.991

HREF, RF 43 1.007

0.5 in. SREF, raw 47 0.957

HREF, raw 38 0.896

SREF, smooth 38 0.990

HREF, smooth 35 0.989

SREF, RF 33 0.992

HREF, RF 35 0.987

1 in. SREF, raw 35 1.049

HREF, raw 26 1.139

SREF, smooth 29 1.007

HREF, smooth 29 1.005

SREF, RF 26 1.011

HREF, RF 28 0.998

3 in. SREF, raw 20 1.045

HREF, raw 26 0.812

SREF, smooth 18 0.990

HREF, smooth 20 1.022

SREF, RF 17 0.970

HREF, RF 20 1.030
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forecast difficulty (and thus, objective skill) changes

depending on what dates are added. Despite these

deficiencies, the results give useful preliminary insight

into the feasibility of adopting ML-based techniques

operationally.

3. Results

a. Traditional verification metrics over the full
domain

1) ROC METRICS

All forecasts have good discrimination ability, as in-

dicated by ROC diagrams (Figs. 5a,d,g,j,m,p,s,v) and

AUC (Figs. 6a–d). Even the worst-performing forecast

system (i.e., the raw SREF ensemble for the 3-in.

threshold; Fig. 4d) has an AUC of 0.80. Nevertheless,

for all thresholds (all but the 3-in. threshold), the SREF

(HREFv2) RFFPs have significantly greater AUC than

the corresponding raw and smoothed ensemble proba-

bilities (p , 0.0001; Figs. 7a,c,e,g). The SREF RFFPs

also have significantly greaterAUC than the rawHREFv2

probabilities (p , 0.0001; Figs. 7a,c,e,g).

Interestingly, the raw SREF forecast probabilities

often have greater AUC compared to the raw HREFv2

forecast probabilities, even though the HREFv2 is a

CAE that performs subjectively better than the SREF.

This behavior likely reflects the insensitivity of the

AUC to bias (thus negating the SREF’s poor reliability;

e.g., Figs. 5b,e,h,k,n,q and 6i–k) as well as the larger

membership of the SREF, which enables the raw SREF

to issue more unique forecast probabilities and thus

have more unique ‘‘points’’ on its ROC curve, pos-

sibly increasing AUC.

2) RELIABILITY

The raw SREF and HREFv2 probabilities suffer

from substantial overforecasting bias at all precipita-

tion thresholds, with the raw SREF forecasts gener-

ally having the worst reliability (Figs. 5b,e,h,k,n,q,t,w

and 6i–l). The 0.1-in. raw SREF forecasts (Fig. 5b)

have particularly poor reliability, as the reliability

curve falls below the no skill line for multiple fore-

cast probability bins. Meanwhile, the raw HREFv2

reliability curves contain ‘‘gaps’’ (Figs. 5e,k,q,w)

since, with only 8 members, the HREFv2 is unable to

issue probabilities in all bins. Spatially smoothing

the raw ensemble forecasts improves reliability and

removes the gaps from the raw HREFv2 reliabil-

ity curves (Figs. 5b,e,h,k,n,q,t,w). The RF technique

tends to produce even better (i.e., near perfect) fore-

cast reliability for both ensembles at most thresholds

(Figs. 6i–l).

3) PERFORMANCE DIAGRAMS

Performance diagrams suggest that the skill of

the RFFPs matches or exceeds that of the other sets

of forecasts at all four precipitation thresholds

(Figs. 5c,f,i,l,o,r,u,x). The SREF RFFPs clearly out-

perform corresponding raw and smoothed SREF fore-

casts (Figs. 5c,i,o,u), while the HREFv2 RFFPs have

the greatest relative performance at the 0.1-in. threshold

(Fig. 5f). At the other thresholds (Figs. 5l,r,x), the

HREFv2 RFFPs and smoothed probabilities demon-

strate similar skill, which noticeably exceeds that of the

raw HREFv2 probabilities.

One interesting characteristic of the SREF perfor-

mance diagrams (Figs. 5c,i,o,u) is that the second-best

performing probabilities (in terms of CSI) tend to be

from the raw SREF (e.g., Figs. 5c,i,o). This is because

the smoothed SREF probabilities require a relatively

large amount of spatial smoothing to optimize the BS

(Fig. 3a), and this degrades resolution (Figs. 6m–p).

Hence, for the SREF forecasts, a main advantage of the

RF technique is that it calibrates the raw ensemble

probabilities while improving—rather than sacrificing—

resolution.

4) BSS AND BS COMPONENTS

With only one exception (i.e., the smoothed 3-in.

HREFv2 probabilities), the RFFPs have significantly

greater BSSs (p , 0.0001) than the corresponding raw

and smoothed ensemble probabilities (Figs. 7b,d,f,h).

At the 0.1-in. threshold, the SREF RFFPs even have

a significantly greater BSS than the raw HREFv2 prob-

abilities (p, 0.0001; Fig. 7b), which is remarkable given

the much coarser horizontal grid spacing of the SREF.

The RF-based approach improves the BSS by simulta-

neously enhancing forecast reliability and resolution

(Figs. 6e,i,m).

The RFFPs provide the greatest increase in BSS

relative to the corresponding raw and smoothed en-

semble forecasts at the smallest precipitation thresh-

olds (Figs. 6e–h), likely because the smallest thresholds

have the greatest climatological frequency (Fig. 8).

More occurrences of yes observations in the train-

ing dataset make it easier for the RF to identify the

systematic relationships between the predictors and

observations.

RFFPs always have better resolution than the corre-

sponding raw and smoothed ensemble forecast prob-

abilities (Figs. 6m–p) and nearly always have better

reliability (Figs. 6i–l). It is also noteworthy that the

RFFPs increase resolution relative to the spatially

smoothed ensemble forecasts, both in cases where the

two-dimensional spatial smoothing technique degrades
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FIG. 5. (a) ROC curve for the SREF at the 0.1-in. threshold for raw (purple), smooth (blue), and RF (red) forecasts. The black dashed

line indicates a random forecast. (b) Attributes diagram for the SREF at the 0.1-in. threshold for the same forecasts as in (a). Black dashed

lines indicate the relative frequency of the sample climatology, the solid black line is the ‘‘no skill’’ line, and the dashed gray line represents

perfect reliability. The number of forecasts in each probability bin is indicated by the colored dashed lines with filled circles.

(c) Performance diagrams for the SREF at the 0.1-in. threshold for the same forecasts as in (a). Lines of constant bias are dashed, while

lines of constant CSI are solid. Each of 21 forecast probability levels are indicated by filled circles. (d)–(f) As in (a)–(c), but for the

HREFv2. (g)–(l) As in (a)–(f), but for the 0.5-in. threshold. (m)–(r) As in (a)–(f), but for the 1-in. threshold. (s)–(x) As in (a)–(f), but for

the 3-in. threshold.
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(e.g., the SREF forecasts) and enhances (e.g., the

HREFv2 forecasts) reliability.

b. Regional results

Similar results are obtained when forecasts are veri-

fied regionally. For the SREF, the RF-based approach

improves the BSS in every region at every threshold

compared to the raw and smoothed ensemble forecasts

(Figs. 9a–d). These greater BSSs can be attributed to

both better reliability and resolution (Figs. 9a–d). Im-

portantly, the RF approach appears to improve the BSS

and BS components approximately equally for each

region at each threshold (with a few exceptions; e.g., the

West region benefits disproportionately at the 1-in.

threshold). This finding suggests that a single, CONUS-

wide RF can learn enough spatial information such that

the benefits to RF-based postprocessing are not con-

fined to a single region.

The same general findings also apply to the HREFv2:

at each threshold, each region benefits from the RF-

based postprocessing approximately equally (Figs. 10a–d).

Of course, these benefits are most pronounced for the

lower thresholds, consistent with the full-domain find-

ings presented above. Regardless, the results suggest

that, for a given threshold, a single, CONUS-wide RF

can provide reliability and resolution benefits to fore-

casts in all regions, despite each region having different

climatological frequencies of threshold exceedance

(e.g., Figs. 9 and 10).

c. Full-domain spatial biases

Full-domain spatial bias magnitudes are small for

both ensembles, as the center of the observed condi-

tional distribution seldom falls more than 20–40 km

from the yes forecast point (Figs. 11a–x). The spatial

biases are greatest for the raw and smoothed SREF

forecasts (Figs. 11a,b,g,h,m,n,s,t) and for the higher (i.e.,

1 and 3 in.; Figs. 11m–x) precipitation thresholds. These

findings make sense given that the higher thresholds

are more likely to be associated with deep convec-

tion, which is more difficult to predict—especially for a

convection-parameterizing ensemble (e.g., Kain et al.

2006)—due to uncertainties in initiation and evolution.

The anisotropy of the conditional distribution of ob-

served yes events seen in Figs. 11a–x is consistent with

Marsh et al. (2012), who obtained a similar preferred

southwest–northeast orientation and explained that it

reflects the mean shape and orientation of individual

precipitation objects over the full dataset.

One important finding in the present study is that the

RF technique helps alleviate spatial biases in the raw

and smoothed ensemble probabilities. This result can

be seen in two distinct ways. First, the center of the

distribution (i.e., the red dot in Figs. 11a–x) is closest

FIG. 6. (a) AUC for SREF and HREFv2 raw (purple), smooth (blue), and RF forecasts (red) for the 0.1-in. threshold. (b)–(d) As in (a),

but for the 0.5-, 1-, and 3-in. thresholds, respectively. (e)–(h) As in (a)–(d), but for BSS. (i)–(l) As in (a)–(d), but for the reliability

component of the BS. (m)–(p) As in (a)–(d), but for the resolution component of the BS. Note the different y axes for (m)–(p), and note

that lower values of BS reliability are better.
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FIG. 7. (a) The p values from one-sided paired permutation significance tests for AUC for

the 0.1-in. threshold. (b) As in (a), but for BSS. (c),(d) As in (a) and (b), but for the 0.5-in.

threshold. (e),(f) As in (a) and (b), but for the 1-in. threshold. (g),(h) As in (a) and (b), but for

the 3-in. threshold. Each square reports the p value associated with testing whether the

forecast displayed across the top row has a significantly greater metric than that from the

forecast displayed along the left-hand column.
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to the yes forecast point (i.e., the black dot in Figs. 11a–x)

in the RF plots (i.e., Figs. 11c,f,i,l,o,r,u,x). Addition-

ally, difference plots (Figs. 12a–p) show that the RF

technique tends to add conditional observations in

locations that oppose the direction of the spatial bias

and/or subtract conditional observations from loca-

tions in the same direction of the spatial bias. For

example, in the 1-in. raw and smoothed SREF fore-

casts, the center of the observed distribution falls too far

to the southeast of the yes forecast point (Figs. 11m,n).

In both cases, the RF technique adds conditional ob-

servations to the northwest and subtracts conditional

observations to the southeast (Figs. 12i,j) so that the

center of the RF-based conditional distribution of ob-

served yes events is closer to the yes forecast point

(Fig. 11o). Similar behavior is seen for both ensembles

at all thresholds, although the effect is stronger for the

SREF since the HREFv2 forecasts have fewer spatial

biases. In many cases, the RF approach also adds con-

ditional yes observations to the yes forecast point and

surrounding points (e.g., Figs. 12g,n,o), which improves

the forecast by increasing the conditional probability

of a yes observation given a yes forecast.

d. Sensitivity of results to dataset length

The best AUC and BSS values are generally obtained

using a dataset of 248 days (Figs. 13a,b,d,e). Interest-

ingly, increasing the dataset beyond 248 days results

in slightly lower AUCs and BSSs. This finding can

potentially be explained by temporal variations in the

observed precipitation climatology. For example, since

AUC is sensitive to the number of correct negatives,

AUC may be artificially inflated (deflated) during

times of the year with lower (higher) forecast uncer-

tainty. Indeed, this is exactly the pattern that is seen

(Figs. 13a,c,d,f). The temporal variation in climatology

may also help explain the behavior of the 3-in. SREF

and HREFv2 BSS curves, which reach a local mini-

mum at 372 days. Although difficult to discern from

Figs. 13c and 13f, the 3-in. uncertainty reaches a mini-

mum (maximum) at 372 (124) days. A relatively low

(high) forecast uncertainty makes a reference forecast

of climatology more (less) skillful and more (less)

harshly penalizes small forecast errors. Thus, the BSS

decreasing after 124 (248) days for the SREF (HREFv2)

may be at least partly explained by the variations in the

already-low observed precipitation climatology.

Because these variations in climatology have the po-

tential to ‘‘artificially’’ influence the verification metrics,

the results should be interpreted cautiously. Neverthe-

less, it is likely that the results presented herein are

not due entirely to temporal variations in the dataset

climatology, especially since the BSS follows a similar

pattern as AUC. For both AUC and BSS, there are

obvious gains from increasing the length of the dataset

from 62 to 124 days and, in general, additional gains

from further increasing the dataset to 248 days. Since

each fold’s testing set contains 31 days, these findings

suggest that a minimum training set length of 93–

217 days (i.e., approximately 1–2 seasons) is desirable

for adequate performance.

e. Select cases

Two cases are subjectively selected to illustrate the

RFFPs’ relative performance on individual days.

1) 1200 UTC 2 OCTOBER–1200 UTC 3 OCTOBER

2017

The heaviest precipitation during this period occurred

in a corridor extending from northeastern Minnesota

into west-central Kansas ahead of a cold front. Rela-

tively heavy precipitation also occurred in northern

Montana downstream of a midlevel shortwave trough,

while southern Louisiana and southern Florida experi-

enced weakly forced tropical showers.

The raw SREF and HREFv2 probabilities performed

relatively well at all four thresholds (Figs. 14a,d,g,j,m,p,s,v).

In general, these probabilities had good sharpness and

resolution. However, these raw ensemble forecasts

also placed 90%–100% probabilities in locations where

the observed precipitation did not exceed the threshold

(e.g., southern Utah in Figs. 14a,d). The spatially

smoothed forecasts (Figs. 14b,e,h,k,n,q,t,w) helped cal-

ibrate the raw forecast probabilities but had reduced

FIG. 8. Number of ‘‘yes’’ observations (i.e., instances when the

observed 24-h precipitation exceeds the given threshold) at the

0.1-, 0.5-, 1-, and 3-in. thresholds. The corresponding relative fre-

quency, abbreviated as ‘‘Climo. Freq.,’’ is displayed above each

bar. Note the logarithmic y axis.
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sharpness. Meanwhile, the RFFPs (Figs. 14c,f,i,l,o,r,u,x)

generally had good calibration, sharpness, and reso-

lution. For example, like the 0.5-in. raw SREF proba-

bilities (Fig. 14g), the 0.5-in. SREF RFFPs (Fig. 14i)

exceeded 80% over east-central Minnesota and

northern Montana, while the spatially smoothed

SREF probabilities (Fig. 14h) were less in both areas.

Moreover, the 0.5- and 1-in. SREF RFFPs (Figs. 14i,o)

had less false alarm area over the High Plains compared

to the spatially smoothed SREF forecasts (Figs. 14h,n).

Differences between the HREFv2 smoothed proba-

bilities and corresponding RFFPs were subtler since

less spatial smoothing was required to calibrate the

raw HREFv2 probabilities. For example, compared to

the corresponding smoothed forecasts (Figs. 14k,q),

the 0.5- and 1-in. HREFv2 RFFPs (Figs. 14l,r) had a

larger spatial extent of .90% probabilities in the Upper

Midwest where observed precipitation exceeded the

threshold. The 0.5-in. RFFPs (Fig. 14l) also gave

slightly lower probabilities in east-central South

Dakota but slightly enhanced the probabilities in central

Iowa compared to the spatially smoothed probabilities

(Fig. 14k).

2) 1200 UTC 22 JUNE–1200 UTC 23 JUNE 2017

Early in this period, elevated storms were ongoing over

South Dakota, Minnesota, Wisconsin, and Michigan.

Later, surface-based storms formed ahead of a cold front

extending from eastern Ontario into central Kansas and

eastern Colorado, bringing heavy rainfall to southern

Wisconsin, central Michigan, and northern New York.

Eastern Colorado and western Kansas also experienced

FIG. 9. Regional BSS, BS reliability, and BS resolution for the raw (purple), spatially smoothed (blue), and

RF-based (red) SREF forecasts at the (a) 0.1-, (b) 0.5-, (c) 1-, and (d) 3-in. thresholds. In each case, the black dashed

line indicates the climatological relative frequency of threshold exceedance in the given region. Full domainmetrics

are also given under the ‘‘Total’’ label.
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0.1–0.5-in rainfall associated with postfrontal upslope

flow. Meanwhile, Tropical Storm Cindy brought heavy

rainfall to the southeastern United States.

Raw ensemble probabilities from the SREF and

HREFv2 (Figs. 15a,d,g,j,m,p,s,v) predicted the day’s

precipitation relatively well, despite several instances of

overconfidence (e.g., central Colorado, northeastern

Mississippi, and eastern California in Fig. 15a; extreme

southwestern Kentucky in Fig. 15j) and misses (e.g.,

northwestern Nebraska in Fig. 15d; southern Iowa in

Fig. 15m). Spatially smoothing the raw ensemble prob-

abilities (Figs. 15b,e,h,k,n,q,t,w) generally helped improve

calibration and POD, but forecasts remained imperfect.

For example, 0.1-in. SREF exceedance probabilities

(Fig. 15b) remained near 1 in southwestern Kentucky

and northeastern Mississippi, while the 0.1-in. HREFv2

smoothed probabilities over northwestern Nebraska

remained less than 2%. The RFFPs (Figs. 15c,f,i.l,o,r,u,x)

tended to fix these problems. The 0.1-in. SREF-based

RFFPs gave smaller probabilities in northeastern

Mississippi (Fig. 15c),while the0.1-in.HREFv2-basedRFFPs

gave higher (i.e., 2%–10%) probabilities in northwestern

Nebraska. In general, the RFFPs (Figs. 15c,f,i,l,o,r,u,x)

had good calibration, sharpness, and resolution. They

tended to increase POD and sharpness compared

to the spatially smoothed forecasts while only modestly

increasing POFD. For example, the HREFv2 1-in.

RFFPs (Fig. 15r) gave higher probabilities in northern

Alabama compared to the raw (Fig. 15p) and smoothed

(Fig. 15q) HREFv2 forecasts while the false alarm area

increased only slightly. Similarly, the SREF-based 3-in.

RFFPs had better POD in central Alabama (Fig. 15u)

with a false alarm area only slightly greater than the

corresponding raw and smoothed ensemble forecasts

(Figs. 15s–t). While the RFFPs did not always improve

on the raw and smoothed ensemble probabilities (e.g.,

central Michigan in Figs. 15v–x), the general perfor-

mance of the RFFPs was strong.

FIG. 10. As in Fig. 9, but for the HREFv2 forecasts. Axes are the same as in Fig. 9.
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FIG. 11. (a) Spatial distribution of observed yes events given a yes forecast (see text) at

point (0, 0) (black dot) for the raw SREF ensemble forecast at the 0.1-in. threshold. The red

dot denotes the center of the distribution. (b),(c) As in (a), but for the SREF-derived

smoothed and RF-based forecasts. (d)–(f) As in (a)–(c), but for the HREFv2. (g)–(l) As in

(a)–(f), but for the 0.5-in. threshold. (m)–(r) As in (a)–(f), but for the 1-in. threshold. (s)–(x)

As in (a)–(f), but for the 3-in. threshold. Note the different color scale used for each threshold.
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4. Summary and discussion

This paper describes a technique to postprocess en-

semble probabilistic precipitation forecasts year-round

over the contiguous United States (CONUS) using a

single random forest (RF). Specifically, the RF-based

postprocessing is applied to 24-h (1200UTC–1200UTC)

probabilistic precipitation forecasts from the Short-

Range Ensemble Forecast System (SREF; Du et al.

2015) and the High-Resolution Ensemble Forecast

System, Version 2 (HREFv2; Jirak et al. 2018; Roberts

et al. 2019) at four precipitation thresholds: 0.1 in.

(2.54mm), 0.5 in. (12.7mm), 1 in. (25.4mm), and 3 in.

(76.2mm). Random forest forecast probabilities (RFFPs)

are compared against each ensemble’s raw probabili-

ties (i.e., the fraction of members exceeding a threshold)

and spatially smoothed probabilities (i.e., raw ensemble

probabilities smoothed in space using an isotropic two-

dimensional Gaussian kernel density function to opti-

mize the Brier score).

Relative to these baseline forecasts, the RFFPs pro-

vide better reliability and resolution, fewer spatial bia-

ses, and statistically greater Brier skill scores (BSSs) and

areas under the relative operating characteristics curve

(AUCs). The RFFPs perform best at lower thresholds,

which have greater climatological frequencies and

thus provide more examples of ‘‘yes observations’’ for

the algorithm to use to discern data patterns associated

with threshold exceedance. The RF-based postprocess-

ing also benefits the SREF more than the HREFv2, a

result that makes sense given that the raw SREF con-

tains more systematic biases than the raw HREFv2. The

result may also indicate that different ensembles require

different sets of predictor variables to achieve the best

postprocessing benefits. For example, it is possible that,

for the HREFv2, the ensemble mean is not as mean-

ingful as an ensemble summary characteristic as it is for

the SREF. Similarly, it is possible that the HREFv2

forecast variables contain more small-scale noise than

those from the SREF because of the HREFv2’s finer

horizontal grid spacing.

The biggest advantage of the RFFPs is that they pro-

vide a convenient ‘‘summary’’ product that is calibrated

with respect to forecast probability magnitudes and

spatial coverage. While near-perfect reliability can also

be achieved using two-dimensional spatial smoothing

with the proper value ofs, spatially smoothing ensemble

probabilities reduces sharpness (e.g., Sobash et al. 2011,

2016; Loken et al. 2017, 2019) and potentially sacrifices

resolution if too much smoothing is required. Moreover,

the ‘‘best’’ value of s may vary based on geographic

location and time of year (e.g., Fig. 3), as precipitation

uncertainty is reduced where stronger and/or more

predictable forcing is present, such as near high terrain

(e.g., Blake et al. 2018) or during the cold season (e.g.,

Schwartz et al. 2019). Thus, while a time- and space-

varying s may be required to properly calibrate fore-

casts using spatial smoothing, the RF-based approach

implicitly accounts for spatial and temporal variations

in precipitation uncertainty.

In practice, RFFPs could provide value to forecasters

as an ensemble summary product that would eliminate

the need for internal forecaster calibration of ensemble

biases. Indeed, the RFFPs would fill an important op-

erational need by quickly conveying reliable uncer-

tainty information to the forecaster (Evans et al. 2014).

The RFFPs could also be used as an automated ‘‘first

guess’’ probabilistic precipitation forecast field, which

could increase forecaster efficiency (e.g., Karstens et al.

2018). Importantly, the implementation of RFFPs into

operations would be computationally feasible. While

training RFs can be expensive, particularly when many

predictor variables and training examples are used, us-

ing a trained RF to make real-time predictions is cheap.

For example, real-time RFFPs are currently being gen-

erated from 0000 UTC HREFv2 data. Including the

preprocessing step, the RFFPs can be made in 30min or

less on a single processor.

Nevertheless, ML-based postprocessing has several

important drawbacks. Most notably, since ML-based

techniques ‘‘learn’’ based on past results, they require

quality historical datasets of sufficient length for both

the forecast and observations. When modifications are

made to the ensemble forecast system, it is often advis-

able to retrain the RF with forecast data from the new

system, since, while the underlying statistical relation-

ships between the forecast and observed variables may

generally hold, the optimal splitting thresholds in the

RF may change as biases enter or exit the ensemble

system. It is an open question (and probably situation

dependent) whether the RF can be retrained simply

by adding the new forecast data to the training set (along

with the old data) or if the RF should be retrained en-

tirely ‘‘from scratch’’ using only the new data. Fortu-

nately, even if the RF requires retraining from scratch,

preliminary results herein suggest that a training set of

‘‘only’’ 93–217 days is required to create skillful RFFPs;

nevertheless, even 93 days represents a substantial gap

between the implementation of the new system and

the ability to create skillful RFFPs. Moreover, due to

the reduced observed climatological frequency of the

higher threshold exceedances, it may be necessary to

have more data for the RFFPs to outperform spatially

smoothed ensemble probabilities at the highest thresh-

olds (e.g., 3 in. and greater), which tend to be most im-

pactful in terms of their threat to life and property.
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FIG. 12. (a) Difference between the conditional distribution of yes

observed events given a yes SREF-based RF forecast at point (0, 0)

(black dot) and the conditional distribution of yes observed events given

a yes raw SREF forecast at (0, 0) at the 0.1-in. threshold (i.e., Fig. 11c

minus Fig. 11a). (b) As in (a), but subtracting the smoothed SREF
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Another drawback of the RF-based approach is that

the RFFPs are not always superior to raw or spatially

smoothed ensemble probabilities at every location

during every day, and it can be difficult to determine

where and why the ML algorithm struggles, particularly

in the absence of interpretability information [e.g.,

partial dependence plots and individual conditional

expectation plots (Goldstein et al. 2015); variable im-

portance (McGovern et al. 2017)]. Therefore, devel-

oping and applying useful ML interpretability metrics

is an important topic of ongoing research (e.g., Gagne

et al. 2019; Herman and Schumacher 2018a). Another

important limitation of ML compared to other post-

processing techniques is that it can require a substantial

degree of hyperparameter tuning to produce a skillful

forecast. Moreover, there are no formal guidelines for

constructing the ML model itself, and it can be im-

possible to know if the model being used is designed

optimally. Finally, as with other postprocessing tech-

niques, the skill of the RFFPs will ultimately be related

to and limited by the skill of the underlying dynami-

cal model (e.g., Gagne et al. 2014). Therefore, while

ML-based postprocessing techniques can serve as use-

ful tools, they do not eliminate the need for human

forecasters and model developers.

5. Conclusions and future work

As computing storage and resources continue to in-

crease, opportunities to effectively apply ML to mete-

orological datasets will undoubtedly become more

numerous as well. This paper provides a first attempt

at addressing some basic considerations regarding the

utilization of machine learning for NWP postprocessing.

Despite the drawbacks associated with ML-based

postprocessing, it is found that RFFPs can provide

calibrated probabilistic precipitation forecasts whose

quality matches or exceeds that of spatially smoothed

ensemble probabilities. Indeed, it is promising that a

single RF can attain such forecast quality, especially

FIG. 13. (a) AUC as a function of dataset length for the SREF. (b),(c) As in (a), but for the BSS and uncertainty component of the

BS, respectively. (d)–(f) As in (a)–(c), but for the HREFv2.

 
distribution from the SREFRF distribution (i.e., Fig. 11cminus Fig. 11b).

(c),(d) As in (a) and (b), but for the HREFv2. (e)–(h) As in (a)–(d), but

for the 0.5-in. threshold. (i)–(l) As in (a)–(d), but for the 1-in. threshold.

(m)–(p) As in (a)–(d), but for the 3-in. threshold.
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FIG. 14. (a) The 0.1-in. PQPFs from the raw SREF ensemble, valid for the 24-h ending at

1200 UTC 3 Oct 2017. The black contours indicate where the observed precipitation exceeded the

given threshold. (b),(c) As in (a), but for the spatially smoothed andRF-based SREFPQPFs. (d)–(f)

As in (a)–(c), but for the HREFv2. (g)–(l) As in (a)–(f), but for the 0.5-in. threshold. (m)–(r) As in

(a)–(f), but for the 1-in. threshold. (s)–(x) As in (a)–(f), but for the 3-in. threshold.
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FIG. 15. As in Fig. 14, but for the 24-h period ending at 1200 UTC 23 Jun 2017.
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given the relatively simplistic RF design and short

(i.e., ,1.5 years) dataset.

Future work should explore using more complex

ML-based techniques for postprocessing and/or other

RF constructions. For example, in the present study,

individual-member forecasts were initially used as pre-

dictors, but this implementation consumed too much

memory to be feasible. However, if variable impor-

tance and/or feature selection (e.g., McGovern et al.

2017; Herman and Schumacher 2018c) were used to

strategically reduce the number of predictor variables,

predictors from more sources could potentially be

incorporated into the algorithm. Including interpret-

ability metrics (e.g., partial dependence plots or indi-

vidual conditional expectation plots; Goldstein et al.

2015) may also provide value to forecasters using the

product in real time. Given that the precipitation cli-

matology over the CONUS varies in space and time

(Schumacher and Johnson 2006), using separate RFs

for individual regions and seasons may add further

interpretability and skill to the RFFPs. Other ML

methods, such as deep learning, may produce better

RFFPs and enhance interpretability as well. Because

this study examined the impacts of ML-based post-

processing on ad hoc, multimodel, multiphysics ensem-

bles, future work should investigate how ML-based

postprocessing affects other, more formally designed

ensembles (e.g., the NCAR Ensemble; Schwartz et al.

2015, 2019). Finally, future work may wish to apply the

general methods of this study to other prediction prob-

lems, such as severe weather, forecasting for longer

or shorter time periods, and summarizing ensemble

output from multiple NWP sources. It is also recom-

mended that current and future products be evaluated

in an operational setting, such as the Flash Flood and

Intense Rainfall Experiment (Albright and Perfater

2018) or the NOAAHazardous Weather Testbed Spring

Forecasting Experiment (e.g., Gallo et al. 2017) to more

directly assess value to forecasters.
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